
A brief primer on Persistent Memory Objects
Derrick Greenspan Naveed Ul. Mustafa Zoran Kolega Mark Heinrich Yan Solihin

University of Central Florida, Orlando, Florida
{derrick.greenspan, unknown.naveedulmustafa, heinrich, yan.solihin}@ucf.edu

kolegazoran@knights.ucf.edu

Introduction to Persistent Memory (PM)

Byte Addressable

Non-Volatile/Persistent

High density/cheaper per byte vs. volatile memory (i.e., DRAM)

Performance much closer to volatile memory vs. block storage (i.e., SSD)

Could augment or replace volatile memory as main memory

PMManagement

Memory-Mapped Files

Organize PM as a file system

Limits the use of system calls

Keeps data as an array of bytes rather than pointers

Requires keeping two systems (file system and virtual memory) consistent despite distinct

semantics

Persistent Memory Objects (PMOs)

Organize PM as a collection of objects (PMOs) holding pointer-rich data structures

No file backing

More intuitive design

PMO System Calls

Primitive Description

attach(name,perm,key)
Render accessible the PMO name, given a valid key with permissions

perm, and return a pointer to the start of the PMO.

detach(addr) Render inaccessible the PMO addr points to.

psync(addr) Force modifications to the PMO associated with addr to be durable.

pcreate(name,size,key) Create a PMO name of size and key.
pdestroy(name,key) Given a valid key, delete PMO name and reclaim its space.

Threat Model

Assumptions

PMO is not attached to any user process (i.e., ”at-rest”)

PMO-resident data structures may contain buffers/pointers

Only the Kernel Crypto API, memcpy/memset, and PMO subsystem are assumed free of

vulnerabilities

Attacker knows location of PMO in system

Goal of Attacker

Disclose private data held in at-rest PMO (Figure 1)

Overwrite data held in at-rest PMO with malicious data

PMO Hashtable

TOP
SECRET

Physical Address: 0x120000

(a) Step 1: Discover PMO address.

Physical Memory
Volatile Memory
(System RAM)

Intel Optane PMEM
(Persistent Memory)

 TOP
SECRET

TOP
SECRET

Kernel Address Space

(b) Step 2: Map physical memory into

kernel space.

Kernel Address Space

TOP
SECRET

Kernel Print Buffer

Top secret data

(c) Step 3: Read mapped data.

Physical Memory
Volatile Memory
(System RAM)

Intel Optane PMEM
(Persistent Memory)

Kernel Address Space

TOP
SECRET

TOP
SECRET

(d) Step 4: Unmap kernel space

memory.

Figure 1. Steps of PMO example attack.

Basic PMO Design Principles

Fast Access

Simple PMO System layout
PMO is contiguous region of memory

Metadata entries located at start of PM and store state information

Data can be accessed by adding given offset to base-address of PMO

Obviates the need for pointer chasing

Low-latency attach/detach calls
Use demand paging to only map required pages at fault time

Only change permission of faulted pages at detach time (rather than unmap them entirely)

Low-latency Pointer Dereference
Use static pointers that point directly to unique PM addresses

Split address space in half so that virtual addresses with MSB of 1 reference PMOs

Crash Consistent

Data are consistent even after crash

Create shadow copy at attach

Render changes crash consistent via psync
Copy modified shadow pages →primary pages

PMO state transitions

PMO recovery depends on the PMO state, as illustrated in Figure 2

Invariant: At least one of the primary or shadow copy are always valid
Recovery restores from that copy based on state

attach(r|w) D
Decryption
complete

DP

C
op

y
C

om
pl

et
e

at
ta

ch
(w

)

C

psync() W

C
opy C

om
plete

CEP Encryption
Complete

EP

Persisting Shadow
Copy

Copying
shadow to primary

Encrypting Primary
into Shadow

Decrypting
Primary

into Shadow

Copying Shadow
to Primary

attach(w)

detach()

Rattach(r)

detach()

ES

Encrypting Shadow
into Primary

de
ta

ch
()

psync()

Copy Complete, attach(r)

Persist C
om

plete

Figure 2. PMO state transitions. Dashed are for the crash consistent design without encryption. Dotted are for the

crash consistent design with encryption. Solid are for both.

Security Protection For At-Rest PMOs

Protection from Corruption

Compute checksum over PMO at detach time

Store checksum in associated PMO metadata entry

Compare computed checksum at attach with stored checksum, attach fails if different

Protection from Disclosure

Use Kernel Crypto API to decrypt PMO when in use (i.e., attached)

Use kernel Crypto API to encrypt PMO when at rest (i.e., detached)

Do not store encryption key alongside PMO; key is provided by user at attach

Encryption/Decryption not atomic, so must add new states (see 2)

Never perform encryption in place

Evaluation Methodology

Evaluated Designs

No Crash Consistency (ext4-dax)

State-of-the-art crash consistent filesystem (Nova-Fortis)

Persistent Memory Object System (PMO System)

Evaluated Benchmarks

Microbenchmarks
LU Decomposition (LU) - 3584 × 3584 doubles
2D-Convolution (2DConv) - 4096 × 128 integers
Tiled Matrix Multiplication (TMM) - 3072 × 3072 integers

FileBench benchmarks
Representations of real-world applications

File Server (FS), Web Server (WS), Web Proxy (WP), Var Mail (VM)

Results

Microbenchmarks

PMOs are only 27.8% slower than a system without crash consistency

PMOs are 1.61× faster than Nova-Fortis

Filebench

PMOs have 18.3% lower bandwidth than a system without crash consistency

PMOs have 3.2× higher bandwidth over NOVA-Fortis

TMMLU 2D GM
0

0.2
0.4
0.6
0.8

1

S
p
e
e
d
u
p
ra
ti
o

NCC PMO NOVA-Fortis

(a) Microbenchmark performance results

FS VM WP WS GM
0

0.2
0.4
0.6
0.8

1

B
a
n
d
w
id
th

NCC PMO NOVA-Fortis

(b) Filebench bandwidth results

Integrity and Encryption

Encryption lowers bandwidth by 41% on average

Integrity Checking alone lowers bandwidth by 3% on average

Both Encryption and Integrity Checking lowers bandwidth by 46% on average

FS WS WP VM GM
0

0.2
0.4
0.6
0.8

1

B
a
n
d
w
id
th

(n
o
rm

a
li
ze
d
)

BASE INT ENC INT+ENC

Figure 4. Bandwidth comparison of attach/detach PMO, with different modes: baseline (BASE), Integrity (INT),

Encryption (ENC), and both (ENC+INT).

Acknowledgements
This work is supported in part by the Office of Naval Research (ONR) under grant N00014-20-

1-2750, and the National Science Foundation (NSF) under grant 1900724.

http://nvmw.ucsd.edu/ 14th Annual Non-Volatile MemoriesWorkshop, San Diego, California University of California at San Diego, March 13-14, 2023

http://nvmw.ucsd.edu/

