
Low-Overhead Security Protection for at-Rest
PMOs

Derrick Greenspan, Naveed Ul Mustafa*, Andres Delgado, Connor Bramham, Christopher Prats, Samu Wallace,
Mark Heinrich, Yan Solihin
University of Central Florida

{derrick.greenspan, andres.delgado, co317248, Christopher.Prats, sa214201, heinrich, yan.solihin}@ucf.edu
*num@nmsu.edu

I. MOTIVATION

Please click here [1] for PDF of the original paper.
Persistent Memory Obcjects (PMOs) manage persistent

data by holding them in pointer-rich data structures with-
out the backing of a file. A PMO is mapped/unmapped
to/from the address space of a user process by invoking
attach()/detach() system calls. PMO systems provide
the psync() system call as a primitive to persist data and to
manage crash consistency: any modifications to a PMO are
not made durable until psync(), and a crash will result
in the PMO being restored to the last durable state of the
most recent psync(). Once created, a PMO is either in-use
i.e., attached to a user process or at-rest i.e., not attached to
any user process. Like files, PMOs are likely to spend most
of their lifetime at-rest, holding the persistent data of user
processes. This makes PMOs susceptible to data remanence
attacks, where unless deleted, PMO data remains in plaintext
in Persistent Memory (PM) for a long time. Therefore, protect-
ing at-rest PMOs is as important as protecting in-use PMOs.

64x64 128x128 256x256 512x512 1024x1024 2048x2048 4096x4096

Matrix Size

1
2
3
4
5
6
7

No
rm

al
ize

d
Ex

ec
ut

io
n 

Ti
m

e

Fig. 1: Execution time of TMM workload.

To protect at-rest PMOs, previous work [2]encrypts ev-
ery PMO on detach() and maintains a checksum that
is updated on every psync(). Similarly, a PMO is de-
crypted and checksum comparison is performed on ev-
ery attach(). This results in an increased latency of
attach()/detach()/psync() proportional to the size of
PMO. These latencies are on the critical path and exposed

This work was supported in part by the U.S. Office of Naval Research
through Grant N00014-23-1-2136 and Grant N00014-20-1-2750, and by the
National Science Foundation through Grant 1900724 and Grant 2106629.

Naveed Ul Mustafa is currently associated with New Mexico State Uni-
versity and was at the University of Central Florida when this work was
performed.

to the attaching process. Figure 1 shows that execution time
of PMO-ported Tiled Matrix Multiplication (TMM) workload
increases from 1.5× at 4096 bytes matrix to 6.4× at 16MB
matrix size, when compared to no-protection case. The source
of these problems, as illustrated in Figure 1 is that protections
(security and integrity mechanisms) are enforced at the gran-
ularity of a whole PMO size regardless of the actual working
set size of an attach()/detach() session.

In this paper, we propose a new approach that we refer to as
Low-Overhead at-rest PMO Protection (LOaPP) (“Low-App”)
scheme without lowering the security level. The key idea is
to reduce the overheads by protecting PMO data at a finer
granularity (i.e. pages) and paying the protection costs only
when data are actually accessed. While conceptually simple,
we have to deal with several challenges. Note that PMOs use a
shadowing approach, where each primary page is backed by a
shadow page [2], to guarantee crash-consistent atomic updates.
An important question is what to decrypt/verify/encrypt for
low-overhead? i.e, shadow pages, or both shadow and primary
pages? Another challenge, when to decrypt/verify/encrypt a
PMO during an attach session. Finally, there is the question
of how to ensure that LOaPP maintains the checksum integrity
of PMOs. We conduct an extensive design-space exploration
to address these challenges.

II. THREAT MODEL

Our goal is to protect at-rest PMO data, ensuring confi-
dentiality and integrity. Attackers aim to reveal or tamper
with sensitive user-process data stored in at-rest PMOs, whose
locations in memory they may identify. Similar to files,
PMOs often remain at-rest, making them vulnerable to data
remanence attacks, where plaintext data in persistent memory
(PM) can be extracted from stolen or improperly discarded
PM. We trust only the Linux Kernel Crypto API [4], critical
kernel functions (e.g., memcpy, memset), and our PMO kernel
subsystem. These components are assumed secure, as their
small codebases are amenable to formal verification [3].

III. LOW OVERHEAD AT-REST PMO PROTECTION DESIGN

Our design space exploration is guided by finding answers
to the following challenges. C1: what should be decrypted,
encrypted, or verified? C2: when to decrypt (D) a data item,
verify (V), and update (U) its checksum, and encrypt (E)

https://ieeexplore.ieee.org/abstract/document/10738362


it during a PMO's attach session? C3: How to ensure the
checksums are in a consistent state in the case of an application
or system crash? This design space is shown in Table I.

TABLE I: LOaPP's design-space exploration.

C2Design C1 D V U E C3

WED/Ip PMO attach -/attach -/psync detach innate

BP/Ip
Both
Pages PF -/PF -/psync detach innate

BP/Id
Both
Pages PF -/PF -/detach detach CrH

SP/Ip
Shadow

Page PF -/PF -/psync psync innate

SP/Id
Shadow

Page PF -/PF -/detach psync CrH

The Whole PMO Encryption and Decryption (WED) design
of [2]encrypts/decrypts whole PMO (C1), performs decryption
at attach() (C2.D) and encryption at detach() (C2.E).
When providing Integrity (I) protection (WED/Ip), it verifies
PMO-level checksum at attach() (C2.V) and updates it at
psync (C2.U). Since the design always encrypts/decrypts a
PMO in two steps, it offers an innate guarantee that the stored
checksum will always match the data within the PMO (C3).

A. Encrypting/Decrypting Both PMO Pages (BP)

The BP design aims at reducing the latency of attach(),
detach(), and psync() by performing encryption/decryp-
tion at granularity of pages (both primary and shadow ones)
(C1). After successfully attaching a PMO, a page is decrypted
only on Page Fault (PF) and encrypted on detach() (i.e.
C2.D and C2.E). BP/Ip additionally verifies the page-level
checksum at PF (C2.V) and updates it at psync() (C2.U).

While BP/Ip significantly lowers the latency of psync()
as compared to WED/Ip, it is still high compared to BP (which
provides no integrity protection), especially when psync()
is invoked more frequently in an attach session. We ask the
following question: Can we design a protection scheme that
still provides integrity verification, ensures crash-consistency
but further lowers the latency of psync()? One option
is to update the checksum of dirty pages on detach()
(C2.U) while the dirty pages themselves are still persisted by
psync(). This design is referred as BP/Id. While BP/Id re-
duces the psync() latency, it creates a checksum-consistency
problem: If a crash happens between a psync() and the
detach(), on reboot, there is a mismatch between between
a page's data (persisted at psync) and its checksum (updated
at detach()). To address the issue, we equip the BP/Id with
a Crash Handler (CrH) routine that restores the checksum-
consistency guarantee for BP/Id design (C3). The crash handler
is discussed in full paper [1].

B. Encrypting/Decrypting only Shadow PMO Page (SP)

To further reduce latency of attach() and detach(),
SP design encrypts and decrypts only shadow pages (C1).
After successfully attaching a PMO, on a page fault only
a shadow page is decrypted (C2.D). The design involves a

trade-off: Since a shadow page is in decrypted form while its
corresponding primary page is in encrypted form, a psync()
operation after persisting a shadow page must encrypt and
persist the shadow page into the primary page (C2.E). The
additional operation of encryption increases psync() la-
tency. When providing integrity protection (SP/Id), the page-
level checksum is verified at page-fault (C2.V) and updated
on psync() (C2.U). Since updates are always guaranteed to
be encrypted and persisted in the primary page by psync(),
SP can simply zero the shadow pages on detach() and
free them. As the updates are persisted by already crash-
consistent psync(), SP maintains the innate guarantee of
crash-recovery (C3). Note that the SP design is likely to reduce
the protection overhead when an application attaches/detaches
a PMO more often than psyncing a PMO (e.g., frequent read-
only PMO attach-sessions).

SP/Id differs from SP/Ip in that it updates a page's checksum
on detach() (C2.U), to further reduce psync() latency,
but relies on the Crash Handler (CrH) routine to guarantee
that the checksums on a detached PMO will always match the
data stored within it (C3).

IV. EVALUATION

Figure 2 compares the I/O bandwidth of different Filebench
workloads [5]achieved by different PMO designs. Results are
normalized to No Encryption Decryption and Integrity (NEDI)
protection and reported for 8 threads with synchronization
performed after every write or append operation. On average,
SPIp is 2.56× faster than WEDIp, while SP alone is 3.2×
faster.

0x

1x

2x

3x

4x

5x

6x

Fileserver Varmail Webproxy Webserver Average

NEDI

SP

BP

WED

SPId

BPId

SPIp

BPIp

WEDIp

Fig. 2: Filebench [5]results, normalized to WEDI.

REFERENCES

[1] D. Greenspan, N. U. Mustafa, A. Delgado, C. Bramham, C. Prats, S.
Wallace, M. Heinrich, and Y. Solihin, ”LOaPP: Improving the Perfor-
mance of Persistent Memory Objects via Low-Overhead at-Rest PMO
Protection,” in *2024 International Symposium on Secure and Private
Execution Environment Design (SEED)*, IEEE, 2024, pp. 131–142.

[2] D. Greenspan, N. U. Mustafa, Z. Kolega, M. Heinrich, and Y. Solihin,
”Improving the Security and Programmability of Persistent Memory
Objects,” in *2022 IEEE International Symposium on Secure and Private
Execution Environment Design (SEED)*, IEEE, 2022, pp. 157–168.

[3] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, *et al.*, ”seL4:
Formal Verification of an OS Kernel,” in *Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles*, 2009, pp.
207–220.



[4] Kernel Development Community, ”Block Cipher Algorithm Definitions,”
Available: https://www.kernel.org/doc/html/v5.14/crypto/api-skcipher.
html#symmetric-key-cipher-api, Accessed: Mar. 1, 2023.

[5] V. Tarasov, ”Filebench: A Flexible Framework for File System Bench-
marking,” *The USENIX Magazine*, vol. 41, p. 6, 2016.

https://www.kernel.org/doc/html/v5.14/crypto/api-skcipher.html#symmetric-key-cipher-api
https://www.kernel.org/doc/html/v5.14/crypto/api-skcipher.html#symmetric-key-cipher-api

	Motivation
	Threat Model
	Low Overhead at-rest PMO Protection Design
	Encrypting/Decrypting Both PMO Pages (BP)
	Encrypting/Decrypting only Shadow PMO Page (SP)

	Evaluation
	References

