
Improving the Security and Programmability of
Persistent Memory Objects

Derrick Greenspan, Naveed Ul Mustafa, Zoran Kolega, Mark Heinrich, Yan Solihin
University of Central Florida

{derrick.greenspan, unknown.naveedulmustafa, heinrich, yan.solihin}@ucf.edu
kolegazoran@knights.ucf.edu

Abstract—Persistent memory (PM) is expected to augment
or replace DRAM as main memory. PM combines byte-
addressability with non-volatility, providing an opportunity to
host byte-addressable data persistently. This paper addresses
three problems with PM for the first time. First, we design a
persistent memory object (PMO) abstraction that allows data to
be retained in memory across process lifetimes and system power
cycles. Second, we address the security of PMOs while at rest
against corruption and disclosure attacks. Third, we address the
programmability of PM crash consistency management with a
primitive psync, that decouples crash consistency and concur-
rency management; psync allows the programmer to specify when
data are crash consistent but conceals how it happens. Our PMO
design outperforms NOVA-Fortis, a memory-mapped file-based
approach providing crash consistency, by 3.61× and 3.2× for
two sets of evaluated workloads. Adding protection for at-rest
data to the design incurs a modest overhead, between 3− 46%,
depending on the level of protection.

I. INTRODUCTION

DIMM-compatible Persistent Memory (PM), such as Intel
Optane PMem, is expected to augment or replace DRAM as
main memory due to its higher density and lower cost per byte.
Due to its non-volatility, PM makes it possible for programs
to host persistent data directly in memory.

Researchers have proposed at least two approaches for
utilizing PM. In the memory-mapped file approach, persistent
data are stored in files but memory-mapped to PM to allow
direct access (DAX) through loads/stores [4], [5], [11], [23].
Such an approach avoids the use of system calls most of
the time, but keeps data as an array of bytes and requires
keeping two systems (filesystem and virtual memory) and
their distinct metadata and semantics consistent for the same
underlying data. Alternatively, the persistent memory object
(PMO) approach [2], [12], [24] organizes PM as a collection
of persistent memory objects (PMOs) holding data directly in
pointer-rich data structures without the backing of a filesystem.

The PMO approach is intuitive to the programmer but
has several major challenges. First, it requires a new system
abstraction that allows data to be long-lived across process
runs and system boots; this abstraction does not exist in current
Operating Systems (OS). Second, since data structures often
contain pointers, they present an enticing target for security
attacks. A pointer corrupted by the attacker in one run becomes
persistent, enabling it to affect future runs of the same, or even
different, applications [20]. Finally, there is a programmability
challenge to achieve crash consistency. Crash consistency is

the property that allows data to be recovered to a consistent
state after a crash such as a power failure or system/application
crash. Existing approaches to crash consistency add durability
to transactional memory, relying on the tight coupling of
concurrency management and crash consistency.

In this work, we address some of the security and pro-
grammability challenges of PMOs. We begin with a discussion
on the lifespan of a PMO, which can be conceptualized as a
combination of two distinct periods: In-use, when a PMO is
mapped (or attached) into the address space of a user process
and accessible to it, and At-rest: when a PMO is not mapped to
the address space of any process i.e. detached. While in-use,
a PMO is exposed to memory safety-based security attacks.
One defense to memory-safety attacks is to reduce exposure
by attaching a PMO only when a process needs to access it
and detaching soon after [24], [25], [26]. However, there have
been no defenses proposed for at-rest PMOs. As with files,
we expect that a typical PMO spends most of its life at-rest.
While at-rest, it is vulnerable to disclosure or corruption that
may be caused by the system software. To protect against
this, we propose encrypting an at-rest PMO and protecting
its integrity with hashing. This way, even a disclosure reveals
only its encrypted form, and corruption will be detected when
the PMO’s integrity is verified prior to use by a process.

This work also addresses the programmability challenge of
achieving crash consistency. Prior work with PMOs, such as
MERR [24] and Twizzler [2] do not address crash consistency,
and assumes that the programmer or a library will manage it.
Other works add durability to transactional memory, relying
on the tight coupling of concurrency management and crash
consistency, e.g. through Intel’s Persistent Memory Develop-
ment Kit (PMDK) [18], or through transactions in Mosiqs [12].
While such a coupling is feasible, it has several significant
drawbacks. First, it forces crash consistency management to
use the same granularity preferred by a transaction. To reduce
the number of conflicts among threads (which trigger rollbacks
and threaten forward progress), transactions prefer small code
granularity. This may conflict with the preferred crash con-
sistency granularity, which may be large because crashes are
much rarer events than thread conflicts. Second, transaction-
based consistency can only be achieved for transactional ap-
plications, restricting the use of PM to such applications [16].

Hence, we propose a different approach that does not rely
on transactions to establish crash consistency. Instead, our

approach introduces psync, a system call that provides a simple
primitive to the programmer to achieve crash consistency.
Psync decouples when data in a PMO reaches a crash con-
sistent state from how the state is achieved. The programmer
specifies points in the code where data are in a crash consistent
state, e.g., when a node has been inserted into a linked list,
a tree has been balanced, etc. The system ensures that all
stores prior to the psync are rendered durable prior to any store
subsequent to the psync. The system hides the mechanism for
achieving crash consistency from the programmer. In addition,
psync is different from a transaction in that it is object-
specific rather than thread-specific, e.g. stores to non-PMO
data (or to a different PMO) are not governed by psync: they
can be performed ahead of psync completion. Furthermore,
unlike transactions, atomicity is not guaranteed between two
consecutive psyncs, thus no abort and rollback are needed.

Finally, this work presents the design and implementation
of an actual PMO abstraction on a real Linux kernel with Intel
Optane PMem. The following properties guide our design:

1) Secure: An abstraction should protect not only PMOs
in-use, but also PMOs at-rest.

2) Crash consistent: To be broadly applicable, the PM
abstraction itself should provide a simple and intuitive
method for programmers to manage crash consistency.

3) Simple and efficient: The programmer should not be
expected to rewrite their applications in a major way to
benefit from the PM data abstraction. Proposed primi-
tives should be implemented efficiently.

1 struct node *c = attach(head, ’w’);
2 while(c->next != NULL && c->data < data) c = c->next;
3 if(c->next == NULL) c->next = new_node;
4 else{tmp = c->next; c->next = new_node;
5 c->next->next = tmp;}
6 psync(head);
7 detach(head);

Listing 1: Linked list node insertion using PMOs.

Listing 1 illustrates how a programmer may use our PMO
abstraction. The programmer first attaches a PMO as they
would map a file, and then inserts a psync call on line
6, when data have reached a consistent point, e.g. after a
node is fully inserted. The programmer may also combine N
operations (insertions, deletions, etc.) together before calling
psync to reduce overhead. Multiple threads within the same
process may read or write to a PMO as it would any other
shared memory address, but psync is process-wide; hence the
programmer should invoke it after threads synchronize.

Overall, this paper makes the following contributions:
• We identify a new threat model for PMOs and present an

example security attack for exploiting PMOs at-rest.
• We present our defense mechanism against attacks on

PMOs at-rest through encryption and integrity verifica-
tion.

• To support crash consistency, we introduce the psync
primitive, which relieves the programmer from the burden
of relying on transactions or using low-level flushing and
fencing to manage persistency.

• We propose a new PMO system abstraction, and imple-
ment it in the Linux kernel.

• We evaluate the PMO system using a set of microbench-
marks and workloads from FileBench [19]. Our crash
consistent design incurs only 27.8% and 18.3% overhead
over a non crash consistent design for microbenchmarks
and FileBench, respectively. When compared with a state-
of-the-art crash consistent filesystem, NOVA-Fortis, our
approach is 1.6× and 3.2× faster for microbenchmarks
and FileBench, respectively. We also evaluate our secure
at-rest design against an insecure baseline and found that
it incurs a tolerable 3− 46% performance overhead, de-
pending on the level of security enabled, for the executed
workloads.

This paper is organized as follows: Section II discusses
background knowledge. Section III discusses the threat model
that our PMO encryption and integrity verification defends
against. Section IV discusses our PMO design. Section V
discusses our extensions to the design to provide for security
at-rest. Section VI discusses the kernel modifications required
to implement PMOs. Section VII describes our evaluation
methodology for our PMO system. Section VIII discusses our
evaluation results. Finally, Section IX concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Approaches for Using PM

PM may be used as memory mapped files, where persis-
tent data are stored in files but memory-mapped to PM to
allow direct access (DAX) through loads/stores. Examples
include ext4-dax [5], Libnvmmio [4], splitFS [11], and NOVA-
Fortis [23]. Alternatively, PM may be used as a reposi-
tory of persistent memory objects (PMOs). Examples include
MERR [24], Twizzler [2], and Mosiqs [12]. Our work assumes
the latter approach, where a PMO holds long-lasting data
directly in pointer-rich data structures, without the backing
of a filesystem.

Along the PMO approach, previous works include
MERR [24], Twizzler [2], Mosiqs [12], and TERP [25].
Though Twizzler and Mosiqs provide a complete working
design for an object-base abstraction of PM, they did not ad-
dress security attacks, both in-use and at-rest. MERR includes
a general defense strategy against in-use security attacks by
attaching a PMO only when needed and keeping it detached
otherwise; this lowers the temporal attack surface of a PMO
by reducing the time a PMO is exposed in user-space. Xu et
al. [26] extends the MERR approach to Intel MPK protection
domains with the goal of restricting the access of PMOs only
to the threads that require access to them. TERP extends
MERR by providing a compiler pass to automatically insert
attaches and detaches. These works did not address the security
of PMO data at-rest, which is the focus of this paper.

B. Crash Consistency

Crash consistency is an important requirement for storing
persistent data structures in PMOs. Otherwise, in the event
of a system or application failure, partial or unordered writes
might leave a PMO-resident data structure in an inconsistent
state from which it cannot be recovered. For example, consider

a persistent linked-list where node A points to node B and a
new node X is to be inserted between A and B. The insertion
operation can be performed in two steps: X → next = B;
A → next = X . If a system failure happens when only
the first update is persisted, X is not reachable from A after
the system is restored. On the other hand, if a crash happens
when only the second update is persisted, B is not reachable
on reboot. To protect against such partial updates, resulting
in memory leaks and dangling pointers, PMO-resident data
structures must be updated in an atomic, crash consistent way.

All prior work in PMOs [2], [12], [24], [25] do not provide
crash consistency as an intrinsic feature of the abstraction
design. Instead, they outsource the responsibility to the pro-
grammer, either as a library, or requiring the programmer
to use the low-level primitives of flushing and fencing. This
approach places the correctness burden on the programmer,
whom always needs to ensure that flushing and fencing are
complete and done in the proper order. Any mistake is hard
to debug and potentially leaves the data structure in an
inconsistent state on a system failure.

C. Persistent Pointers

A PMO can be designed with either absolute or relative
persistent pointers. An absolute pointer contains a virtual
address, e.g. in Mnemsoyne [21], and is fast to dereference
because it relies on traditional address translation mechanisms.
However, it makes PMO mapping rigid and PMO Space
Layout Randomization (PSLR) [24] costly; any time the PMO
is mapped to a different virtual address region, pointers in
the PMO must be rewritten accordingly. Finally, if multiple
processes are allowed to simultaneously share a PMO, absolute
pointers require that the PMO be mapped to the same virtual
address range in all processes.

A relative pointer is a combination of a PMO ID and offset
in format of object:offset. It can use a regular 64-bit for-
mat or use a fat pointer format where a pointer is represented
by multiple fields. To dereference a pointer, a translation table
is used to translate the system-wide unique PMO ID to its
base virtual address [22], and then the offset is applied. Unlike
absolute pointers, relocating such PMOs is straightforward to
perform, but dereferencing is expensive. MERR/TERP, and
PMDK uses the relative pointer approach, as does Mosiqs,
which leverages PMDK. Twizzler also uses relative pointers,
and provides a lightweight design that repurposes the virtual
memory capabilities of the x86 Memory Management Unit
(MMU) for persistent pointers.

While relative pointers facilitate relocation of PMOs on
every attach and thus support PSLR, they are inherently
expensive for dereferencing as they require an extra translation
step to be mapped to a virtual address. Therefore, there is
a clear trade off between performance and flexibility that is
difficult to reconcile, and no option is clearly superior.

III. THREAT MODEL

We consider a threat model where a PMO is not attached
to any user process and so is not accessible in the user space

(i.e., the PMO is at-rest). We assume that PMO-resident data-
structures may contain buffers and pointers. We do not trust
system software except for a subset, specifically the Linux
Kernel Crypto API [14], critical kernel memory functions such
as memcpy and memset, and our PMO kernel subsystem. We
assume that all of these components are free of any code
vulnerabilities. This assumption is reasonable, as the code-
size of these components are small enough to be formally
verified. For example, the Linux kernel Crypto API for version
5.14.18 contains about 82,500 source lines of code, our PMO
kernel subsystem contains about 1,200 source lines of code,
and the kernel memory functions contain about 100 lines of
architecture-specific inline assembly, compared to the rest of
the entire kernel which contains about 2.2 million lines. That
means our kernel subsystem, the critical memory functions
(which are architecture specific, and written in assembly), and
the Crypto API contribute to only 0.4% of the entire kernel.

The goal of the attacker is to disclose private data of a
user-process held in an at-rest PMO or to overwrite it with
malicious data. Furthermore, we assume that the attacker
knows the location and layout of a PMO in persistent memory.
Our threat model is different from both [20], [24], since their
threat model requires that the PMO be in-use by a user process
before it can be exploited.

PMO Hashtable

TOP
SECRET

Physical Address: 0x120000

(a) Step 1: Discover PMO ad-
dress.

Physical Memory
Volatile Memory
(System RAM)

Intel Optane PMEM
(Persistent Memory)

 TOP
SECRET

TOP
SECRET

Kernel Address Space

(b) Step 2: Map physical memory
into kernel space.

Kernel Address Space

TOP
SECRET

Kernel Print Buffer

Top secret data

(c) Step 3: Read mapped data.

Physical Memory
Volatile Memory
(System RAM)

Intel Optane PMEM
(Persistent Memory)

Kernel Address Space

TOP
SECRET

TOP
SECRET

(d) Step 4: Unmap kernel space
memory.

Fig. 1: Steps of PMO example attack.

Figure 1 illustrates an example PMO data-disclosure attack.
We assume that the attacker has already exploited an existing
vulnerability in the kernel code to alter its control flow. In
Step 1, the attacker discovers the physical address of the
desired PMO by stepping through the PMO metadata hashtable
(described in Section IV-A). In Step 2, the attacker maps the
PMO into the kernel virtual address space (With Linux, the
data are mapped into the vmalloc/ioremap kernel space [5]). In
Step 3, the attacker copies the contents of the PMO into the
kernel print buffer; disclosing the secret information within.
Finally, in Step 4, the attacker clears the print buffer and
unmaps the PMO from the kernel address space, leaving no
trace of the attack. Alternatively, in a PMO data-injection
attack, an attacker would in Step 3 write and then persist

invalid or malicious data into the PMO. If a user process
attaches the PMO in the future, and relies on its data, this
could potentially alter its control flow.

IV. PERSISTENT MEMORY OBJECT DESIGN

We envision PMOs to be a contiguous region of memory.
To achieve atomic crash consistent updates, there are generally
two possible approaches: logging and shadowing. Logging
(undo/redo) requires the creation and management of an
undo/redo log, which is expensive to achieve at the OS level
due to the need to intercept every first store (undo log) or
every store (redo log). The kernel can only intercept a store
by marking a page read only, such that the store incurs a trap
to the kernel.

Therefore, we rely on shadowing, where each writable PMO
is backed by a shadow copy with the same allocation size
as the primary copy (i.e., the PMO itself). All updates are
performed on the shadow until a crash consistent point is
reached. However, before performing updates, a shadow must
be initialized by copying over pages from the primary PMO.
Instead of creating a shadow for the entire PMO, we create
a shadow page only for a page that is actually written. Thus,
regardless of the PMO size, the shadow only consists of the
subset of pages that are actually modified. To achieve this, a
page is copied over only on a page-fault caused by a write over
a read-only page (i.e. on-demand page copying). Subsequent
invocations of psync persist updates in the shadow before
synchronizing it with the primary. Here, synchronization refers
to the process of copying updated shadow pages back to the
primary PMO and persisting them. Note that for a PMO that
is attached with read-only access, no shadow copy is created
at all.

A. PMO System Layout

Persistent Memory Fabric

PMO Region

Magic
Number Start End Padding

Metadata Entry
Hashtable

Allocated
Node
Count

State Name Size PMO
Addr

A
llo

ca
te

d

 (w
he

n
at

ta
ch

ed
 a

s
w

rit
e)

Shad-
ow

Addr

Check-
sum

To volatile memory

PID
Addr

Boot
ID

Header
Region ShadowMetadata

Region

Name
Metadata
Region
Start

Next
Free
PMO

4 KiB 1 GiB

Primary

PID
Linked List

Fig. 2: The layout of a PMO system.

As shown in Figure 2, our design divides the persistent
memory fabric into three regions: the Header Region, which
contains information important to the entire PMO system, the
PMO Metadata Region, which contains a hashtable designed
to make PMO operations fast, and the PMO Region, which
contains the PMOs themselves. The Header Region is situated

at the start of the persistent memory, making it easier for
the kernel to access the header information. To keep space
overhead low, we use a 4KiB-size (1 page) header. It contains
a magic key indicating that the device has been formatted as
a PMO system, the name of the PMO system, the starting and
ending addresses of the PMO system, the starting address of
the PMO Metadata Region, the starting address of the next
available space for a PMO, and padding for future expansion
(such as versioning information). We keep the header mapped
as uncacheable in kernel memory to ensure all header updates
are durable.

The Metadata Region stores the metadata information of all
PMOs. It consists of a header containing the allocated node
count, which represents the number of PMOs in the system.
The count is used to keep track of the number of created
PMOs, which is capped by the size of the hashtable. The
count is followed by the Metadata Entry Hashtable. Each entry
contains the minimum necessary information to ensure the
correct operation of PMOs, consisting of the current state of
the PMO (states and their transitions are described in Section
IV-D2), the name and size of the PMO, a pointer to a linked list
in volatile memory tracking the PIDs of processes for which
the PMO is currently mapped to (when mapped as read), the
current boot ID1, and the address of the PMO and its shadow
copy (if any). The PID and Boot ID are used in combination
to ensure that a PMO is attached to only one one process with
write permissions at a time, both in normal operation and upon
crash recovery, as described in Section IV-B2. The checksum
field is used for PMO integrity verification as described in
Section V. To avoid false sharing, each entry should be a
multiple of the size of the CPU cache line. The rest of the
PMO system consists of the PMO Data Region, where the
PMOs themselves reside.

B. Programming Interface

TABLE I: Summary of PMO programming interface

Primitive Description

attach(name,perm,key) Render accessible the PMO name, given a
valid key with permissions perm.

detach(addr) Render inaccessible the PMO addr points to.

psync(addr) Force modifications to the PMO associated
with addr to be durable.

pcreate(name,size,key) Create a PMO name of size and key.

pdestroy(name,key) Given a valid key, delete PMO name,
reclaiming the space for a new PMO.

1) pcreate/pdestroy: The pcreate primitive creates a PMO
of a specified name, size, and key. Once created, a PMO exists
in the PM until destroyed by pdestroy. Upon invocation, the
kernel searches for unoccupied space within the PMO Region
by using the “Next Free PMO” field of the header region
(Figure 2). If the requested size is larger than the remaining
available space for the PMO system, then the call sets errno
to ENOSPC and returns a null pointer. Otherwise, a persistent
region of a requested size is reserved for the PMO, the “Next

1For Linux, this is found at /proc/sys/kernel/random/boot_id.

Free PMO” field is updated, and an entry is created in the
PMO metadata hashtable.

2) attach: Successful invocation of the attach primitive
maps a PMO (of specified name) into the virtual address (VA)
space of the calling process, rendering it accessible to the
process. We only allow one process to attach a PMO with
intent to write, but allow multiple processes to attach a PMO
with intent to read. Read and write permissions are mutually
exclusive of each other, e.g., a PMO cannot be attached as a
read by one process, and as a write by another. This avoids
data consistency problems that arise from multiple writers.

PMOs: A(R), B(RW), C(RW)

Process P1 Process P2 Process P3 Outcome
attach(A, rw,) invalid (permissions)

attach(B,r,) valid
attach(B,r,) valid
attach(C,rw,) valid

attach(C,rw,) invalid (>1 writer)
attach(C,r,) invalid (existing writer)

Fig. 3: PMO inter-process sharing semantics.

Figure 3 illustrates how attach works in the context of
multiple processes. One PMO has read only access permission
(PMO A), and two others have read and write permission
(PMOs B and C). If P1 attempts to attach A with a read/write
access request (top line), the call returns with an error due
to insufficient permissions, as A is restricted to read only
access. Later, if P2 attempts to attach B with read only access,
the attach succeeds. P3’s attempts to attach B with read only
access is also granted as multiple readers are permitted. P3’s
attempts to attach PMO C with read/write access is valid, but
P2’s attempts to attach it returns an error. Finally, an attach
request for PMO C by P1 also returns an error because there
is already an existing process that has attached the writer.

To ensure mutually exclusive read and write access to a
PMO, the boot ID is used in combination with linked-list of
PIDs. A PID entry is added to the linked-list on successful
attach and removed on detach. On an attach request for a
PMO, a boot ID field (in the corresponding hashtable entry)
which is different from the current system's boot ID indicates
that a system crash or forcible reboot has occurred. On the
other hand, if the boot ID matches but none of processes
listed in the PID linked list are alive, it indicates that they
have abnormally terminated. In both cases, the kernel starts
the recovery procedure for the requested PMO. Otherwise, for
a read-only attach or a write attach when the PID linked-list is
empty, the kernel adds an entry to the linked list, sets the boot
ID field to the system's boot ID and returns success. If the
linked-list is not empty for a write attach, the kernel rejects
the attach, sets errno to EAGAIN, and returns a null pointer.

3) detach: The detach primitive renders a PMO inacces-
sible to the calling process. If a process attempts to detach
a PMO that is already detached or has never been attached,
this results in undefined behavior, as the VA has an invalid
mapping to the physical address (PA) of the PMO. Success-
fully detaching a PMO attached as write sets the boot ID to

sentinel value and removes PID linked-list, while successfully
detaching a PMO attached as read only removes the PID
linked-list entry associated with the calling process, unless
the calling process is the only process that has attached the
PMO; in that case, the entire linked-list is destroyed. Detach
does not persist modifications after the last psync, hence the
programmer is expected to call psync prior to detach to persist
all modifications.

4) psync: Since all modifications to the PMO are performed
on its shadow copy, the psync primitive forces all modifi-
cations made on the shadow copy to reach the persistency
domain by initiating a sequence of flushes followed by a
memory barrier, and then synchronizes it with the primary
copy. We design psync to have similar semantics to the POSIX
msync and fsync [9], but with only one argument: a pointer
to the PMO. As described earlier, psync has atomic semantics
for stores to the PMO (i.e. primary copy), but non-atomic
semantics for all other stores.

Figure 4 illustrates the atomic semantics with an example,
showing two psync calls for PMO A, with stores to A (st1,
st2, st4, and st5) or to PMO B (st3 and st6). If the first call
completes, then the PMO A (i.e., its primary copy) in memory
reflects the durable state of st1. Prior to the completion of the
second psync, PMO A is unchanged. It is only afterwards that
PMO A reflects the durable state of st2 and st4 but not st5.
Therefore, psync is atomic for PMO A as the stores between
the two psync calls are either entirely reflected (in the case of
a successful completion) in PMO A or not at all (in the case
of a failure between two psync calls). PMO B (i.e., its primary
copy) remains unchanged as there is no psync involving PMO
B. Note however that st3 and st6 may or may not be reflected
in the shadow copy of PMO B, depending on whether the
corresponding cache blocks have been evicted; this is because
stores to the shadow copy are non-atomic.

psync1(A) psync2(A) Time

st1(A) st2(A) st3(B) st4(A) st5(A) st6(B)

Persistent
state for A: {st1}

Persistent state
for A: {st2, st4}

Fig. 4: psync transactional semantics.

These data-centric semantics distinguish psync from a
transaction, which is thread/code-centric. Not invoking psync
prevents prior modifications from becoming persistent, which
is in contrast to fsync’s semantics, where changes to the copy
in memory may still be reflected on disk, even if fsync is
not invoked. As a result, psync gives the programmer explicit
control over crash consistency points for PMO data in their
code. Upon crash-recovery, the PMO (i.e., primary copy)
reflects the updates persisted by the most recently completed
psync. From the point of view of the system, psync provides
a PMO-specific persistency barrier, and is idempotent.

In a multi-threaded application, a situation can arise where
a psync that was invoked by one thread on a given PMO is in
progress, while another thread (from the same process) wants

to write to the same PMO. There are several options to address
this challenge. The naive approach is to block all reads/writes
on a PMO for which psync is in progress. Though a workable
solution, this can significantly slow an application’s progress.
A more aggressive approach is to mark shadow pages that have
been synchronized with the primary PMO and allow the writer
thread to update only those pages while blocking a writer
thread requesting unmarked pages. This approach, similar to
one adopted by NOVA-Fortis [23], can reduce the blocking
interval as it blocks a thread only when it requests access to
unmarked pages. For our current design, and for performance
reasons, we expect the programmer to avoid this situation by
synchronizing threads accessing the same PMO, although we
intend to investigate and evaluate the two approaches in a
future work.

C. Design for Fast Access

The latency seen by an application storing its persistent
data in a PMO is affected by two main factors: primitive
latencies and pointer dereferencing latency. Primitive latencies
refer to the latencies for performing PMO primitives, such as
creating PMOs, mapping and unmapping them in a process
address space, and rendering them durable in a crash consistent
manner. These latencies in turn depend upon the amount of
metadata that must be managed by the kernel while controlling
accesses to a PMO. Pointer dereferencing latency is the time-
overhead involved in translation between virtual PMO point-
ers to their physical counterparts while accessing the PMO-
resident data structures. A low-latency design is provided by
the following design choices:

1) PMO Layout: Most filesystems use pointer chasing to
locate the next block of a file or track free blocks, such as with
filesystem inodes. Though this approach supports the dynamic
growth of a file, it is not conducive to fast access. Instead,
we advocate for an approach where a PMO is a contiguous
region of memory with a static size set at the PMO’s creation.
Any PMO-resident data can be accessed by adding a given
offset to the base-address of the PMO; this approach is faster
as it does not need to chase pointers. If the size of the data
structure grows beyond what was allocated initially for the
PMO, a resize operation can be performed by creating a new
PMO with a larger size, copying its content, and deleting the
original PMO.

2) Low-latency Attach/Detach: In a naive approach, on
invocation of an attach system call, the kernel could map the
entire PMO into the process address space and unmap the en-
tire PMO at detach. This solution is expensive for a large PMO
with multiple page table entries (PTEs), as PTEs need to be
initialized by the kernel, invoking expensive TLB shootdowns
and subsequent TLB misses. MERR [24] proposed embedding
the page table subtree into the PMO itself, so that when a
PMO is attached only one PTE needs to be initialized. As a
result, this solution means that regardless of PMO size, only a
single TLB shootdown is needed when a PMO is mapped into
virtual memory. However, MERR’s solution needs a custom
hardware permission-matrix to provide access-control to PMO.

Since our PMO system must work with commodity hardware,
we use a different solution, demand paging [8].

When a PMO is attached, the kernel sets a flag to indicate
that future page faults for pages within a PMO should map the
faulting page into a VA space. When a PMO is detached, the
kernel renders the specified address associated with a PMO
inaccessible, by setting the metadata entry to the detached
state, and then disabling the read/write permissions of all
faulted pages, ensuring that all page faults on the address
range generate a segmentation fault. This solution is not
as efficient as MERR’s solution, which requires specialized
hardware. However, in most cases, this solution is faster than
simply mapping the entire PMO at attach time and also works
on existing systems, because only accessed pages have been
faulted in, instead of all of them.

3) Low-Latency Pointer Dereferencing: A key challenge of
PMO-resident (i.e. persistent) pointers is that the VA that a
pointer refers to must be associated with the PA of a PMO
beyond the process lifetime [1]. This is required to ensure
that pointers within and across PMOs are always valid. As
described in Section II, one solution to this challenge is to
use relative pointers in object:offset format [3], and
use a per-PMO Persistent Object Table (POT) for efficient
pointer translation from persistent to virtual form. However,
this approach puts the pointer-to-VA translation on the crit-
ical path to PMO access, incurring substantial latency, and
increases the amount of PMO metadata. For TPC-C, persistent
pointer dereferencing was reported to cause a 15% execu-
tion time overhead [22]. While hardware supported pointer
translation [22] could significantly reduce its latency, it is not
clear if such an expensive hardware solution is necessary. The
high latency software translation is in conflict with the design
goal of fast access to PMOs, while hardware-based translation
conflicts with the goal of PMO systems being available on
existing systems.

As an alternative to relative pointers, we propose to use
static pointers. Static pointers are already in VA format, so
they can be dereferenced without additional overhead and
without any need for hardware support, just like non-persistent
pointers. However, the drawbacks are that all pointers in the
PMO need to be updated when the PMO mapping address
changes, and that two different objects must not map to the
same VA. Therefore, we assign the VA range to PMOs at
creation time such that no two addresses overlap. To achieve
this, we use several techniques. First, to avoid an overlap
between PMOs and non-persistent data, we split the effective
virtual user space address space into two halves based on
the most significant bit of an address: persistent and volatile,
with the persistent-half reserved for PMOs and starting at
(for example) the VA x. The kernel maps a PMO into the
persistent-half of the VA space by assigning to it the address
range from x + y to x + y + s where y is the offset of the
PMO in PM from its start, and s is its size. To prevent two
PMOs from mapping to the same VA range, we assign PMOs
globally unique VAs.

With such an approach, we run the risk of running out of

VA space if there are too many large PMOs in a static VA
allocation scheme. For example, in a 48-bit address space, the
persistent half can only hold a maximum of 128 TiB (i.e., 64
million 2MiB-sized PMOs, but only 128 thousand 1GiB-sized
PMOs). We identify a possible mitigation strategy: we can use
static pointers for small to medium PMOs (KiBs to MiBs), and
use relative pointers for larger PMOs (GiBs and above).

Since the VA of a PMO is determined by its location in PM,
our approach makes it costlier to perform the PMO address
randomization used in MERR [24]; moving a PMO to a differ-
ent VA requires updating all pointers in the PMO. Nonetheless,
the common case of quickly dereferencing persistent pointers
without the need of software or hardware translation, or
additional per-PMO metadata, makes our approach attractive.

D. Design for Crash-Consistency

1) Psync: The psync system call should persist updates in
a PMO without requiring explicit logging by the programmer.
Also, updates should be persisted in an atomic fashion; all or
none should become durable. To achieve these goals, our PMO
system manages two copies of the PMO data: the primary
copy and the shadow copy. Writes to the PMO are performed
in the shadow copy until psync is invoked, at which point the
writes are copied over to the primary copy in a durable atomic
manner by the system call.

As a naive approach, at the time of PMO creation, we could
allocate twice the requested PMO size in PM and split it in
two halves. The first half of the allocation can be used for the
primary copy and the second half for the shadow copy. Since
the hashtable entry for a PMO keeps track of its start address
and size, calculating the starting and ending address of each
copy of the allocation is simple. However, this approach is
wasteful, especially when a PMO is attached only with read
permissions and so a shadow copy exists, but is never used.
Instead, we follow a different approach where at the time of
creation, a memory region of requested size is allocated and
serves as the primary copy. When a PMO is attached by an
application with write permission, our design allocates the size
of the PMO again and designates it as the shadow copy. Our
approach can potentially result in primary and shadow copies
non-contiguous to each other. Therefore, we track the shadow
copy through the “PMO Shadow Addr” entry pointing to the
location of shadow (see Figure 2). A null entry indicates that
the PMO is either detached or attached as read only.

2) PMO state transitions: To achieve crash consistent up-
dates, a PMO is always in one of the five states shown in
Figure 5 (consider only the solid/black and dashed/blue part).
The state is kept in an uncacheable portion of the metadata
hashtable. A state transition is performed using an atomic
instruction, and since the state pages are not cacheable, the
changes made by the atomic instruction are also durable.

A PMO is initially in the D (detached) state upon creation.
If it is attached by a process with read-only permission, the
PMO state transitions D → R (Read), where updates to the
PMO are not allowed, and psync is ignored. When attached
with write permissions, the PMO state transitions D → W

Pe
rs

is
t C

om
pl

et
e

P psync() detach()W
Encryption
CompleteEP CE

Decryption
Complete DP

Encry
ptio

n

Complet
e

ES

attach(r|w) D detach()

de
ta

ch
()

R

Copy Complete, attach(r)

C

Encrypting Primary
into Shadow

detach()
attach(w)

C
op

y
C

om
pl

et
e

at
ta

ch
(w

) C
opy

C
om

plete

Decrypting
Primary into Shadow

attach(r)

Copying Shadow
to Primary Encrypting Shadow

Into Primary
Persisting Shadow

Copy

Copying
Shadow to Primary

psync()

Fig. 5: PMO state transitions. Dashed are for the crash
consistent design without encryption. Dotted are for the crash
consistent design with encryption. Solid are for both.

(Write) where updates are permitted. If a programmer invokes
detach on a PMO in the R or W state, it transitions
(R , W) → D . If a programmer invokes psync on a PMO in
the W state, it transitions W → P (Psync), to indicate the
start of psync. The kernel then performs a page table walk to
identify all dirty shadow pages [7] associated with the PMO,
and the cache lines belonging to the dirty pages are flushed.
After this point, the shadow copy is durable and consistent,
and the PMO state transitions P → C (Copy). The kernel
copies all modified pages from the shadow to primary, flushes
the cache lines, and emits a memory barrier. The PMO returns
C → W after the memory barrier completes.

3) Recovery: If psync is interrupted by a crash or power
failure, the kernel must ensure that the PMO is recoverable.
It is helpful to start with an invariant: at least one of either
the primary or shadow copy contains a consistent version of
the data (the “valid copy”). The recovery process depends on
the state of each PMO to determine which copy to rely on
as consistent, illustrated in Figure 5. On post-crash attach, the
kernel checks the state of the PMO. If D or R , then the
primary and shadow PMOs are both valid, so there is nothing
to do; if W , psync has not started, and the primary copy is
the consistent one, so it is copied over to the shadow, this in
effect removes transient updates in the shadow copy since the
last psync. If P , psync has started but there is no guarantee
that the shadow copy is consistent, so this case is treated the
same as W ; finally if C , the shadow copy is known to be
consistent and reflects all the updates until the current psync,
but the primary copy might not (it could be partially copied
over). In this case, the shadow copy is copied to the primary.

V. SECURITY PROTECTION FOR AT-REST PMO

In this section, we present a design that protects against the
threat model and example attack described in Section III. The
design provides a defense of at-rest PMOs against corruption
and disclosure through integrity verification and encryption,
respectively.

A. Protection From Corruption

To protect a PMO at-rest from corruption, we rely on a
checksum computed over the PMO at detach time, and durably
store it in the checksum field of the corresponding hashtable
entry (Figure 2). A future attach on the same PMO triggers
checksum recomputation and compares it against the stored
one; a match indicates that integrity is verified, i.e. the PMO
has not been modified at-rest, and the attach returns a pointer.
Otherwise, it returns an error code to the calling process.

The computation of a checksum on every detach/attach
increases the latency of the attach/detach system calls, espe-
cially for larger PMOs. To address this challenge, we identify
two optimizations. First, for detach, we can compute the
checksum out of the critical path, in the background. This
is achieved by returning the detach system call immediately
after the data within the PMO have been rendered inaccessible,
while launching a background kernel thread to compute the
checksum. The latency of the checksum computation is thus
hidden, except if an attach request is made for the same PMO,
which is then blocked until the computation is completed.

However, integrity verification is inherently a part of the
critical path of an attach, hence hiding it is challenging. One
possible optimization is to allow computation to continue
speculatively before integrity verification is completed. If
verification fails, computation is rolled back and speculative
state is discarded. Most modern processor architectures already
have a mechanism for speculative execution to support out-of-
order execution. This would prevent integrity verification from
blocking forward progress on a PMO, while some of them in-
clude an additional transactional memory support to execute a
transaction speculatively. Unfortunately, they are only capable
of speculation up to several tens to hundreds of instructions,
allowing only tens to hundreds of nanoseconds of latency
hiding capability, while requiring hardware/kernel coordina-
tion. Furthermore, as demonstrated in Spectre/Meltdown-style
attacks, speculative execution may result in data leakage even
as they are eventually rolled back. An alternative solution is to
split the PMO into chunks, maintain a separate hash for each
chunk, and perform integrity verification not at attach time but
on first load/store to that chunk. This on-demand and chunk-
level integrity verification can potentially lower the latency
incurred on the critical path. We leave solving the problem of
verification-latency for future work.

A second aspect to consider is the checksum algorithm
selection and checksum hash length, which may range from
slower/more secure to faster/less secure. For example, MD5 is
faster and less secure than SHA256.

B. Protection From Disclosure

Recall that in Section III, we explained that we consider
the Kernel Crypto API, certain kernel memory routines such
as memcpy and memset, and the PMO Subsystem to be
trusted. To protect a PMO at-rest from disclosure, the PMO
subsystem invokes the Kernel Crypto API to decrypt the PMO
only when it is in use, and immediately decrypts it when it
becomes at rest, i.e. detached. One challenge in providing

encryption to protect PMOs from at-rest disclosure is to
retain the crash consistency offered by the base design. The
difficulty in retaining crash consistency arises from the fact
that encryption/decryption is not atomic; therefore, like normal
writes to a PMO, it may also be interrupted by crashes and
power failures. A crash consistent PMO that supports encryp-
tion should be either entirely encrypted or entirely decrypted,
hence crash consistency orchestration is needed. Furthermore,
encryption/decryption modifies the PMO, so even a read-only
PMO incurs modification.

To that end, our crash consistency approach utilizes a
shadowing approach, including when a PMO is attached for
read-only access. Since we already employ a shadow copy to
manage crash consistency, we repurpose the shadow copy to
manage the crash consistency of encryption/decryption. With
shadowing, a PMO is never encrypted or decrypted in place.
In this way, it is guaranteed that the system always has either a
primary or shadow copy free of partial encryption/decryption
in the case of a system or application crash.

Figure 5 shows the state-transition diagram for our design
(consider only the solid/black and dotted/red components). A
PMO is initially in the D state. On an attach call, irrespective
of the permissions, it transitions D → DP (Decrypt Primary)
where the kernel decrypts the primary copy into the shadow.
This ensures that if the system crashes while decryption is in
progress, the primary copy is still consistent and can be used
for recovery. After completing decryption and persisting the
shadow, the PMO transitions DP → C , where the shadow
is copied back and persisted to primary. At the completion of
copying, both the shadow and primary copies are decrypted
and durable, and state changes to either R or W , depending
on attach permissions.

In R , psync is ignored, while the invocation of detach
transitions R → ES (Encrypt Shadow), and the kernel
encrypts the shadow copy into the primary and persists it. Once
encryption has completed, the shadow is zeroed, persisted, and
set free for future use. Finally, the PMO transitions R → D .

In W , the invocation of psync triggers state transitions in
the same way as in the basic crash consistent design. In case
of invoking detach in W , the PMO transitions W → EP
(Encrypt Primary) where the kernel encrypts the primary
copy to the shadow and persists it. Note that detach does
not automatically persist modifications and we expect the
programmer to call psync prior to detach, making both the
primary and the shadow copy updated and persisted before
detach is invoked. Therefore, encrypting the primary into the
shadow still preserves the updates in the primary copy. Upon
the completion of encryption, the PMO transitions EP → CE
(Copy Encrypted), where the kernel copies the encrypted
shadow to the primary and persists it. Encryption is not
performed in place due to the risk of partial writes in case
of a system crash. Finally, when copying is completed, the
PMO transitions CE → D . Note that in the D state, both
the primary and shadow copy are encrypted, so it is safe to
free the shadow copy.

It is important to note that encryption keys are not stored
alongside the PMO, in persistent memory, or in the kernel
when the PMO is at-rest. Rather, the kernel receives a copy
of the encryption key from the programmer at attach time,
which means that an attacker must know the encryption key
to modify an at-rest PMO.

The above scheme exposes the full decryption latency in
the attach system call. A possible optimization is to decrypt
the primary into the shadow and then immediately return with
success, avoiding copying of shadow into primary and cutting
its latency from the attach critical path. This should reduce
attach latency substantially. However, since this design would
have the primary encrypted but shadow decrypted, psync
would require that the shadow to be encrypted first before it is
copied to the primary. This optimization is therefore ineffective
for a situation where psync is frequent, but effective when
psync is infrequent. We apply this optimization for PMOs that
are read-only, since psync does not occur.

VI. IMPLEMENTATION

A. Persistent Memory Provisioning

Intel Optane PMem supports namespaces which expose the
memory as a logical device [15] with different modes. We
provision the namespace in devdax mode, providing direct
access (DAX) to the underlying PM [10]; this mode emits
a character device (as opposed to a block device). Analogous
to block devices being formatted with mkfs, we introduce
a similar utility for formatting PMO systems, mkpmo, that
zeroes a given namespace and writes the PMO header and
metadata structures.

B. Kernel Modifications

We make several modifications to the Linux kernel, and add
attach, detach, and psync as system calls. In addition, we mod-
ify the Linux per-process memory descriptor (mm_struct),
and we modify the virtual address page fault handler to use
demand paging for PMOs, adopting the VM_SOFTDIRTY
flag [7] to track modified pages, so that psync only copies
dirty pages to the primary copy.

To represent PMOs mapped in the address space of a
process, we extend the existing vm_area_struct in the
Linux kernel to include new fields needed only when mapping
PMOs in the address space of a process, which we call a
vpm_area_struct. To allow for quick access, we intro-
duce a new red-black tree to mm_struct with pmo_rb as
its root.

Most modern x86-64 CPUs can access 248 virtual ad-
dresses2, divided into kernel and user space. We split the user-
space virtual address range in half and reserve the upper-half
(i.e. the second MSB is 1) for PMOs, resulting in 246 addresses
for PMOs and 246 addresses for normal user-space processes.
We also modify the page fault handler so that a page fault to
a PMO invokes our code to check the state of the PMO and
handle demand paging.

2With 5-level page tables, Ice Lake-SP and newer can access up to 256

virtual addresses.

C. Attach/Detach and Psync

We organize the metadata about the PMO in a new kernel
wide radix tree (pmo radix tree), which provides fast lookup
when an attach call is made to determine if the PMO exists.
If a PMO is newly attached, a VPMA is created, initialized,
and data structures (hashtable and red black tree) updated.
On detach, the kernel searches the VMA associated with the
specified address and process and traverses the linked list to
change each page permission to PROT_NONE. For the integrity
verification checksum and encryption, we use SHA256, and
XTS-AES-256 respectively.

The psync call walks the page table for shadow pages
associated with the attached PMO to identify dirty pages
through the soft-dirty bit. Modified pages’ indices are added
to a linked list, and all associated cache lines are flushed to
persist the page using memcpy flushcache, and their dirty bits
are cleared. A memory barrier is emitted before the kernel
traverses the linked list to copy each page from the shadow
copy to the primary copy.

VII. EVALUATION METHODOLOGY

A. Correctness and Crash Consistency

To verify that our implementation is crash consistent, we
inserted panic() into psync immediately after the persist
stage, but before the copy stage, which generates a kernel
panic, and forces the system to crash. When the system is
restarted, we reattach the PMO and examine its content. We
verified that the data from the previous psync are in the PMO,
as expected. We also tested inserting panic() immediately
before the persist stage. After restart, we verified that the data
from before the psync are there at attach.

B. Performance Assessment

In order to test our PMO system performance, we compare
it against two schemes. The baseline scheme has no crash
consistency (NCC) and represents an ideal performance case
that is functionally incorrect. For NCC, we use the ext4-dax
filesystem which uses Intel libpmem’s pmem persist to persist
updates without any crash consistency. A crash with NCC may
cause data corruption with dangling or invalid pointers, from
which the original data structure may be unrecoverable. The
second design we compare our scheme against is the state-
of-the-art crash consistent filesystem, NOVA-Fortis [23], that
employs snapshots to support crash consistency. We note that
NOVA-Fortis only guarantees crash consistency of the file
system, but does not guarantee crash consistency of application
data. We compare our PMO system against NCC and NOVA-
Fortis in terms of execution time and I/O bandwidth of
specified workloads. We also evaluate the thread scalability
and synchronization-rate sensitivities of our PMO system.
Finally, we determine the overhead caused by adding integrity
checking and/or encryption to the PMO system.

For our evaluation, we used the system described in Table
II. We implemented our PMO system on a modified version of
Linux Kernel v5.14.18; we used stock v5.14.18 for evaluating

TABLE II: System used for evaluation.

Component Specifications
Motherboard Dual socket Supermicro X11DPi-NT (w/ADR)

CPU 2×Intel Xeon Gold 6230, 20 cores, 40 threads
CPU Clock 2.1GHz (3.9GHz Boost)

DRAM 4× 32GiB DDR4 @ 2666MHz
PMEM 4× 128GiB Intel Optane DC
Kernel Linux 5.14.18 (PMO, NCC), 5.1.0 (NOVA)

NCC ext4 with dax. We use Linux Kernel v5.1.0 for NOVA-
Fortis, as it is the latest version NOVA-Fortis supports. The
Linux distribution was Fedora 33.

C. Microbenchmarks

In order to measure PMO performance from the perspective
of execution time, we use an OpenMP version of LU decom-
position provided by [13], (and originally from the SPLASH
benchmark suite [17]), a 2D-Convolution (2dConv) benchmark
and a Tiled Matrix Multiplication (TMM) benchmark, taken
from a recent PM study [6]. We run LU, 2dConv and TMM
with matrix sizes of 3584×3584 doubles, 4096×128 integers,
and 3072× 3072 integers, respectively.

We ported these benchmarks by replacing their dynamic
memory allocation calls (e.g., malloc and calloc) with a pair of
pcreate and attach (to create and map into the process’ address
space a PMO of required size) and with pmem map file for
NOVA-Fortis. Each benchmark ported to use PMOs uses mul-
tiple PMOs determined by the number of memory allocation
calls in the original version. At the end of each iteration of
the performance critical loop in the benchmarks, if a specified
time duration ∆ has elapsed from the previous invocation of
the synchronization, we insert a synchronization point (i.e.,
psync in case of PMO, generating a snapshot in case of NOVA-
Fortis, and invoking pmem persist in case of NCC). Varying
∆ varies the synchronization rate.

D. Filebench

We rely on FileBench benchmarks [19], which represent I/O
intensive real-world applications, for measuring I/O bandwidth
performance. We ported these benchmarks to use PMOs by
replacing files with PMOs of respective sizes. For ext4-dax
(i.e., NCC) and NOVA-Fortis we mapped files via DAX. Fur-
thermore, we insert synchronization points in the benchmarks
after every update (i.e., append or wholefilewrite flowop,
in Filebench’s terminology). Also, to avoid races between
threads, we emit a pthread barrier before and after each
psync. Each workload was run twice for ten minutes, and the
result is the averages between the runs. Each workload has
a different percentage of write operations: FileServer (FS) is
67% writes, VarMail (VM) is 50%, WebProxy (WP) is 16%,
and WebServer (WS) is 9%.

E. Encryption and Memory Integrity

In addition to testing our PMO system performance with
crash consistency, we also attempt to determine the overhead
compared to a baseline crash consistent design when adding
encryption and data integrity. As with the crash consistency

evaluation above, we evaluate encryption and integrity with
Filebench; and we do so by adding new attach/detach calls
between each file operation, rather than simply at the be-
ginning and end of the benchmark. Note that this lowers
the performance of Filebench: on average, Filebench with
attach/detach calls between each operation is about 1

3 of the
performance without. Note that adding attach/detach calls
between each operation makes the microbenchmarks too slow
to obtain useful results, so we do not perform this evaluation
for them.

VIII. EVALUATION RESULTS

For this section, we want to answer several questions: How
much performance overhead does our PMO system incur in
comparison with a non crash consistent (NCC) and a crash
consistent system? How scalable is the system, as the number
of threads increase, and as the frequency of psync increases?
Is encryption and integrity verification effective against at-
rest attacks, and what penalty do they incur on performance?
Since there are no existing object-based abstractions providing
intrinsic support for crash consistency, we compare our PMO
abstraction with NOVA-Fortis, a state-of-the-art file system.

A. Performance Evaluation of Crash Consistency

Figure 6 compares the performance of crash consistent
systems i.e., PMO and NOVA-Fortis with the Non-Crash-
Consistent (NCC) system i.e., ext4-dax. Results are normal-
ized to NCC and reported for benchmarks executed with 16
threads while synchronization is performed at rate of 4× per
second. When compared with NCC, our PMO system slows
down the execution time by only ≈ 27.8% (geometric mean)
vs. ≈ 55.1% with NOVA-Fortis. This indicates that our PMO
system is not much slower than NCC and is ≈ 1.61× faster
than NOVA-Fortis.

LU 2D TMM GMEAN
0

0.5

1

Sp
ee

du
p

ra
tio

NCC PMO NOVA-Fortis

Fig. 6: Performance of crash consistent PMO and NOVA-
Fortis normalized to Non-Crash-Consistent (NCC) ext4-dax.

This can be attributed to the fact that unlike NCC, crash
consistent systems employ additional mechanisms to support
crash consistency (i.e, shadowing with PMOs, and snapshots in
NOVA-Fortis). Since it synchronizes at each synchronization
point in a benchmark, only those PMOs that are actively used
by the benchmark, our PMO system performs better. On the
other hand, NOVA-Fortis takes a crash consistent image of the
whole filesystem at each synchronization point and not only
the files that are in active use. This illustrates the strength of
an application-centric approach for crash consistency.

B. I/O Bandwidth and Crash Consistency

FS WS WP VM GM
0

0.5

1

B
an

dw
id

th
(n

or
m

al
iz

ed
)

NCC PMO NOVA-Fortis

Fig. 7: Bandwidth comparison of crash consistent PMO and
NOVA-Fortis to Non-Crash-Consistent (NCC) ext4-dax.

Figure 7 compares the I/O bandwidth of different FileBench
workloads achieved by our PMO system, to the I/O bandwidth
of NCC and NOVA-Fortis. Results are normalized to NCC and
reported for 16 threads with synchronization performed on
every update operation. On average, shown by the geometric
mean (GM) bar, PMOs and Nova-fortis provide crash consis-
tency at the expense of losing 18.3% and 74.4% bandwidth,
respectively. This result means that our PMO system achieves
bandwidth ≈ 3.2× higher than NOVA-Fortis. Performance of
both PMOs and NOVA-Fortis vary across benchmarks as each
benchmark has a different number of synchronization points
in accordance with their write percentage. More frequent syn-
chronization incurs more overhead and thus lower bandwidth
performance.

C. Thread-scalability

1 2 4 816
0

5

10

15

N
or

m
al

iz
ed

Pe
rf

or
m

an
ce

1 2 4 816
0

5

10

15

1 2 4 816
0

5

10

15

Fig. 8: Thread-scalability of the PMO system. From left to
right: 2DConv, TMM, and LU.

Figure 8 shows the thread-scalabilty of the PMO system’s
performance. Results, normalized to a single thread, are shown
for 2DConv, TMM and LU workloads when executed with
N(= 1, 4, 8, 16) threads and synchronized four times per
second. Results show that performance scales with increasing
number of threads. However, the rate of scaling decreases from
2DConv to TMM, and LU. This is explained by the number of
pages updated per synchronization operation (work assigned
to each thread) in each workload. These are 184, 9216, and
24451 pages for 2Dconv, TMM and LU, respectively.

D. Synchronization Frequency Sensitivity

Figure 9 shows the sensitivity of the PMO system’s per-
formance to the frequency of psync. Results, normalized to 1
psync/sec, are shown for 2DConv, TMM and LU workloads
executed with 16 threads and N(= 1, 2, 4, 8) psync/sec. The
results show that the performance of LU and TMM degrades

1 2 4 8
0

0.5

1

N
or

m
al

iz
ed

Pe
rf

or
m

an
ce

1 2 4 8
0

0.5

1

1 2 4 8
0

0.5

1

Fig. 9: Synchronization-sensitivity of the PMO system. From
left to right: 2DConv, TMM, and LU.

rapidly as the number of times psync is invoked increases.
This is for the same reason that the rate of performance
scaling decreases in Figure 8: more pages are updated per
synchronization operation with LU and TMM.

E. I/O Bandwidth of Encryption and Memory Integrity

FS WS WP VM GM
0

0.5

1

B
an

dw
id

th
(n

or
m

al
iz

ed
)

BASE INT ENC INT+ENC

Fig. 10: Bandwidth comparison of attach/detach PMO, with
different modes: baseline (BASE), Integrity (INT), Encryption
(ENC), and both (ENC+INT).

Figure 10 shows the impact of our security scheme on
the bandwidth achieved with Filebench. The figure shows
bandwidth for four systems: an insecure baseline (BASE) to
which all others are normalized, PMO with integrity verifi-
cation only (INT), PMO with encryption only (ENC), and
both integrity verification and encryption (INT+ENC). Results
are obtained with 16 threads. The figure shows that integrity
checking incurs a small overhead (geometric mean of 3%), but
encryption incurs a substantial overhead (geometric mean of
41%). Together, integrity and encryption lower the bandwidth
by 46%. ENC is more expensive due to the fact that both
encryption/decryption affects both primary and shadow copies
of a PMO, and is performed on the whole PMO. This result
indicates that we should apply only what is needed, e.g. choose
only INT if data secrecy is not important. This result also
points to the idea that performing decryption at a smaller
granularity is a better solution; we leave this for future work.

F. Security Evaluation of Encryption and Memory Integrity

To evaluate the strength of our approach to protect against
at-rest PMO attacks, we design an experiment to detect
whether our approach can prevent unauthorized disclosure and
detect unauthorized modifications of at-rest PMO data. We
initially create 1,000 PMOs and write a secret into a random
selection of them. An attacker (in this case, a malicious Linux
kernel module) selects multiple PMOs at random and discovers
its physical address by reviewing the metadata hashtable. The

kernel module then maps the selected PMO into kernel address
space via memremap, and either compares the data within
the PMO with the expected secret (i.e., the module attempts
an unauthorized disclosure) or attempts to modify the data
within the PMO (i.e., the module performs an unauthorized
modification). The module keeps track of each time the
disclosure is attempted, each time the disclosure reveals a
secret, and each time an unauthorized modification occurs.

A user process, using the same seed as the kernel module,
invokes attach on the same random selection of PMOs. The
process tracks when the PMO subsystem detects that an
unauthorized modification has occurred. We determine the
effectiveness of our approach by calculating the ratio between
the number of detected unauthorized modifications or unau-
thorized disclosures, divided by the total number of attacks.

We find that when not using encryption, the kernel module
discovers 100% of the secrets (i.e., all of the PMO’s secrets
were leaked). When using encryption, the kernel module
discovers 0% of the secrets (i.e., no secrets are leaked). When
using integrity verification, 100% of the attaches fail (i.e., the
kernel detects data corruption in all of the affected PMOs).
These results demonstrate that our design protects against both
at-rest disclosures and at-rest modifications of data.

IX. CONCLUSION

Security and programmabity are two important requirements
for the design of a widely acceptable crash consistent object-
based abstraction of persistent memory. We discussed the de-
sign and implementation of a secure persistent memory objects
(PMO) system with intrinsic support for crash consistency.
Results show that our crash consistent PMO system performs
1.67× and 3× faster, for two sets of evaluated benchmarks,
compared to the state-of-the-art file-based competitor NOVA-
fortis. Security adds an overhead of 3% when protecting
PMOs at-rest only from corruption, 41% when protecting from
disclosure only, and 46% for both.

ACKNOWLEDGEMENTS

This work is supported in part by the ONR under grant
N00014-20-1-2750, and by the NSF under grant 1900724. We
thank Dr. Paul Gazzillo, the reviewers, and our shepherd Dr.
Michel Kinsy, for providing feedback to improve this paper.

REFERENCES

[1] Alexandro Baldassin, João Baretto, Daniel Castro, and Paolo Romano.
Persistent memory: A survey of programming support and implementa-
tions. 2021.

[2] Daniel Bittman, Peter Alvaro, Pankaj Mehra, Darrell DE Long, and
Ethan L Miller. Twizzler: a data-centric {OS} for non-volatile memory.
In 2020 {USENIX} Annual Technical Conference ({USENIX}{ATC}
20), pages 65–80, 2020.

[3] Daniel Bittman, Peter Alvaro, and Ethan L Miller. A persistent problem:
Managing pointers in nvm. In Proceedings of the 10th Workshop on
Programming Languages and Operating Systems, pages 30–37, 2019.

[4] Jungsik Choi, Jaewan Hong, Youngjin Kwon, and Hwansoo Han. Libn-
vmmio reconstructing software {IO} path with failure-atomic memory-
mapped interface. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 1–16, 2020.

[5] Linux Kernel Source Documentation. From https://kernel.org/.

[6] H. Elnawawy, M. Alshboul, J. Tuck, and Y. Solihin. Efficient checkpoint-
ing of loop-based codes for non-volatile main memory. In 2017 26th
International Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 318–329, 2017.

[7] Pavel Emelyanov. Soft-dirty ptes, Apr 2013. From https://kernel.org/.
[8] Mel Gorman. Understanding the Linux virtual memory manager.

Prentice Hall Upper Saddle River, 2004.
[9] Austin Common Standards Revision Group. IEEE Standard for Infor-

mation Technology–Portable Operating System Interface (POSIX(TM))
Base Specifications, Issue 7. 2018.

[10] Intel. Persistent Memory Programming. August 2016.
[11] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,

Aasheesh Kolli, and Vijay Chidambaram. Splitfs: Reducing software
overhead in file systems for persistent memory. In Proceedings of the
27th ACM Symposium on Operating Systems Principles, pages 494–508,
2019.

[12] Awais Khan, Hyogi Sim, Sudharshan S Vazhkudai, Jinsuk Ma, Myeong-
Hoon Oh, and Youngjae Kim. Persistent memory object storage and
indexing for scientific computing. In 2020 IEEE/ACM Workshop on
Memory Centric High Performance Computing (MCHPC), pages 1–9.
IEEE, 2020.

[13] Christian Klauser. Lu decomposition and matrix multiplication with
openmp, 2011.

[14] James Morris. Kernel korner: the linux kernel cryptographic api. Linux
Journal, 2003(108):10, 2003.

[15] Ivy B Peng, Maya B Gokhale, and Eric W Green. System evaluation
of the intel optane byte-addressable nvm. In Proceedings of the
International Symposium on Memory Systems, pages 304–315, 2019.

[16] Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu,
and Onur Mutiu. Thynvm: Enabling software-transparent crash consis-
tency in persistent memory systems. In 2015 48th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 672–
685. IEEE, 2015.

[17] Christos Sakalis, Carl Leonardsson, Stefanos Kaxiras, and Alberto Ros.
Splash-3: A properly synchronized benchmark suite for contemporary
research. In 2016 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 101–111, 2016.

[18] Steve Scargall. Programming persistent memory: A comprehensive guide
for developers. Springer Nature, 2020.

[19] Vasily Tarasov, Erez Zadok, and Spencer Shepler. Filebench: A flexible
framework for file system benchmarking. USENIX; login, 41(1):6–12,
2016.

[20] Naveed Ul Mustafa, Yuanchao Xu, Xipeng Shen, and Yan Solihin.
Seeds of seed: New security challenges of persistent memory. In IEEE
International Symposium on Secure and Private Execution Environment
Design (SEED), Virtual, 2021. SEED Organizing Committee 2021.

[21] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne:
Lightweight persistent memory. In Proceedings of the Sixteenth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVI, pages 91–104, New York, NY,
USA, 2011. ACM.

[22] Tiancong Wang, Sakthikumaran Sambasivam, Yan Solihin, and James
Tuck. Hardware supported persistent object address translation. In 2017
50th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 800–812. IEEE, 2017.

[23] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadharaiah,
Amit Borase, Tamires Brito Da Silva, Steven Swanson, and Andy
Rudoff. Nova-fortis: A fault-tolerant non-volatile main memory file
system. In Proceedings of the 26th Symposium on Operating Systems
Principles, pages 478–496, 2017.

[24] Yuanchao Xu, Yan Solihin, and Xipeng Shen. Merr: Improving security
of persistent memory objects via efficient memory exposure reduction
and randomization. New York, NY, USA, 2020. Association for
Computing Machinery.

[25] Yuanchao Xu, Chencheng Ye, Xipeng Shen, and Yan Solihin. Temporal
exposure reduction protection for persistent memory. In 2022 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), pages 908–924. IEEE, 2022.

[26] Yuanchao Xu, ChenCheng Ye, Yan Solihin, and Xipeng Shen. Hardware-
based domain virtualization for intra-process isolation of persistent
memory objects. In 2020 ACM/IEEE 47th Annual International Sym-
posium on Computer Architecture (ISCA), pages 680–692. IEEE, 2020.

