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I. MOTIVATION

(Note: please click here for the original paper.)
DIMM-Compatible Persistent Memory (PM), such as In-

tel Optane PMem combines byte-addressability with non-
volatility, providing an opportunity to host byte-addressable
data persistently, and may augment or replace DRAM as main
memory due to its higher density and lower cost per byte. PM
may be managed as memory-mapped files [2], [5], [10], or as a
collection of persistent memory objects (PMOs). The memory-
mapped file approach limits the use of system calls, but keeps
data as an array of bytes and requires keeping two systems
(filesystem and virtual memory) and their distinct metadata
and semantics consistent for the same underlying data. The
PMO approach organizes PM as a collection of persistent
memory objects (PMOs) holding pointer-rich data structures
without the backing of a filesystem, which is a more intuitive
design.

This paper presents and evaluates a crash-consistent and
secure design of PMO abstraction. Crash consistency is the
property that allows data to be recovered to a consistent state
after a crash, and is an important requirement for storing per-
sistent data structures, otherwise, in the event of a failure, data
could be in an unrecoverable state. Prior work in PMOs [1],
[6], [11], [12] do not provide crash consistency as an intrinsic
feature of the abstraction design. Instead, they put burden on
the programmer to use the low-level primitives of flushing
and fencing in the proper order, any mistake can be difficult
to debug. An alternative design for crash-consistency is to
use transactional memory, relying on the tight coupling of
concurrency management and crash consistency. This forces
crash consistency management to use the same small code
granularity preferred by a transaction. This conflicts with the
preferred crash consistency granularity, which is large since
crashes are much rarer events than thread conflicts.

Since data structures often contain pointers, persistent data
structures present an enticing target for security attacks. A
pointer corrupted by the attacker in one run becomes per-
sistent, effecting future runs of the same, or even different,
applications [9]. A PMO may be exploited for security attack
while it is In-use (attached to the address space of a user
process) or At-rest (not attached to the address space of any
process). While previous work [11], [12] propose protections
for in-use PMOs, there have been no defense proposed for
at-rest PMOs.

II. THREAT MOODEL

We consider a threat model where PMO is at-rest. The
goal of attacker is to disclose or overwrite private data of a
user process held in an at-rest PMO. We do not trust system
software except for a subset, specifically the Linux Kernel
Crypto API and PMO subsystem. We also assume that the
attacker knows the location of the PMO in persistent memory.

III. DESIGN

Our PMO design addresses the crash-consistency and se-
curity challenges of PMOs, and provides three fundamental
system calls: attach, detach, and psync. Attach maps a
specified PMO into the address space of the calling process.
Detach renders the PMO inaccessible to the calling process.

a) Crash-consistency: We address crash-consistency by
introducing psync, a system call that decouples when data in
a PMO reaches a crash-consistent state from how it happens.
With psync, the programmer specifies points in the code where
data are to be rendered crash consistent. The system then
ensures that all stores prior to the psync are crash consistent
prior to any subsequent one. The key idea behind psync is
that we utilize a shadow PMO for updates, and introduce an
invariant that at least one of either the primary or the shadow
PMO are valid at all times that can be used for crash recovery.
When psync is invoked on a PMO, it copies all the pages with
modified data from the shadow into the primary copy.

b) Security: We protect against attacks on at-rest PMOs
by extending our PMO design to support integrity verification
and encryption. Integrity verification is performed by comput-
ing the checksum of the PMO at detach time, and storing it
within the PMO metadata. A future attach on the same PMO
causes the checksum to be computed again, and compared
with the stored checksum. If it has not been modified, the
attach succeeds, otherwise it fails. Encryption is performed by
invoking the Kernel Crypto API to decrypt the PMO when
in use, and immediately encrypt it at rest. To ensure that the
design is still crash consistent, we repurpose the shadowing
approach so that there is always either a valid encrypted or
valid decrypted copy of the PMO.

IV. EVALUATION METHODOLOGY

We compare our PMO system implementation to a baseline
scheme with no crash consistency (NCC) and a state-of-the-
art crash consistent filesystem design (NOVA-Fortis) [10]. For
our evaluation, we use a real system with Intel Optane PMem.
We use several Microbenchmarks: an OpenMP version of LU
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decomposition [7], a 2D-Convolution (2DConv) benchmark,
and a Tiled Matrix Multiplication (TMM) benchmark taken
from a PM study [3]. We run LU, 2DConv, and TMM with
matrix sizes of 3584 × 3584 doubles, 4096 × 128 integers,
and 3072 × 3072 integers, respectively. We ported these
benchmarks by replacing their dynamic memory allocation
calls with a pair of pcreate (that creates a PMO of given
size) and attach, and with pmem_map_file for NOVA-
Fortis. At the end of each iteration of the performance critical
loop in the benchmarks, we insert a synchronization point,
if a specified amount of time has elapsed. We also rely
on FileBench benchmarks [8], which represent I/O intensive
real-world applications. When evaluating PMOs, we replace
files with PMOs of respective sizes, and synchronize after
every update. We use four different workloads, each has a
different percentage of write operations: FileServer (FS) is
67% writes, VarMail (VM) is 50%, WebProxy (WP) is 16%,
and WebServer (WS) is 9%. We also evaluate the impact of
encryption on Filebench by adding new attach/detach
calls between each I/O operation.

V. RESULTS
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Fig. 1: (a) Microbenchmark performance. (b) Filebench band-
width.

We find that for the microbenchmarks (Figure 1a), PMOs
are only ≈ 27.8% slower than a system with no crash
consistency, and is ≈ 1.61× faster than NOVA-Fortis. For
Filebench (Figure 1b), PMOs and Nova-Fortis provide crash
consistency at the expense of losing 18.3% and 74.4% band-
width, respectively. This means that our PMO system achieves
bandwidth ≈ 3.2× higher than NOVA-Fortis for this set of
benchmarks.
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Fig. 2: Bandwidth comparison of attach/detach PMO, with
different modes: baseline (BASE), Integrity (INT), Encryption
(ENC), and both (ENC+INT).

We find that integrity and encryption together (Figure 2)
lower the bandwidth by 46%, while integrity checking alone
incurs a small overhead of only 3%.

Finally, we design an experiment to verify that our approach
prevents unauthorized disclosure of data and protects against
integrity violations. We create 1000 PMOs and write a secret
into a random selection of them; an attacker selects multiple
PMOs at random and attempts to read the data within the
PMO, or attempts to modify it. We find that attempts to read
the data within the PMO are 100% successful without using
encryption, but completely unsuccessful when encryption is
used. Similarly, with integrity verification, the kernel detects
data corruption in 100% of cases.
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Fig. 3: Thread-scalability of the PMO system. From left to
right: 2DConv, TMM, and LU.
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Fig. 4: Synchronization-sensitivity of the PMO system. From
left to right: 2DConv, TMM, and LU.
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